Arxius de Miscel·lània Zoològica. Volumen 16 (2018) Páginas: 121-133

GBIF: Data paper

Contribution to the knowledge of meiobenthic Copepoda (Crustacea) from the Sardinian coast, Italy

Noli, N., Sbrocca, C., Sandulli, R., Balsamo, M., Semprucci, F.

DOI: https://doi.org/10.32800/amz.2018.16.0121

Descargar

PDF

Palabras clave

Copépodos meiobénticos, Meiofauna, Biogeografía, Lista de control, Cerdeña, Italia

Cita

Noli, N., Sbrocca, C., Sandulli, R., Balsamo, M., Semprucci, F., 2018. Contribution to the knowledge of meiobenthic Copepoda (Crustacea) from the Sardinian coast, Italy. Arxius de Miscel·lània Zoològica, 16: 121-133, DOI: https://doi.org/10.32800/amz.2018.16.0121

Fecha de recepción:

02/01/2018

Fecha de aceptación:

22/06/2018

Fecha de publicación:

10/07/2018

Compartir

Visitas

1421

Descargas

357

Abstract

Contribution to the knowledge of meiobenthic Copepoda (Crustacea) from the Sardinian coast, Italy
Data available on the Italian species of Copepoda Canuelloida Khodami, Vaun MacArthur, Blanco-Bercial and Martínez Arbizu, 2017 and Harpacticoida Sars, 1903 report overall 210 species, but their diversity and biogeography are still poorly investigated. We carried out a faunistic survey along the eastern coast of Sardinia (Ogliastra region) in order to document these taxa in the area. A total of 41 species in 36 genera and 18 families were found. Although many species were identified as putative, the current Italian checklist was updated with 12 new records of genera and 4 of species. Longipedia coronata Claus, 1862 (Canuelloida), Diosaccus tenuicornis (Claus, 1863), Asellopsis hispida Brady and Robertson, 1873, Wellsopsyllus (intermediopsyllus) intermedius (Scott and Scott, 1895) (all Harpacticoida) are reported for the first time from Sardinia coasts. The copepod community was particularly rich at Ogliastra Island, a small rocky island with natural reefs, rocky shoals and Posidonia oceanica meadows. Species found there were mainly related to coarse sands and macrophytal detritus.

Data published in GBIF: doi:10.15470/dxru6l

Key words: Meiobenthic Copepoda, Meiofauna, Biogeography, Check-list, Sardinia, Italy

Resumen

Contribución al conocimiento de los copépodos (Crustacea) meiobénticos de la costa de Cerdeña, Italia
Los datos disponibles sobre especies italianas de copépodos Canuelloida Khodami, Vaun MacArthur, Blanco-Bercial y Martínez Arbizu, 2017 y Harpacticoida Sars, 1903 registran un total de 210 especies, pero la diversidad y biogeografía de las mismas siguen estando escasamente investigadas. Realizamos un estudio faunístico en la costa este de Cerdeña (región de Ogliastra) con objeto de documentar la presencia de estos taxones en dicha área. Encontramos un total de 41 especies de 36 géneros y 18 familias. Aunque muchas especies se identificaron como putativas, la lista de control italiana vigente se actualizó con 12 nuevos registros de géneros y cuatro de especies. Longipedia coronata Claus, 1862 (Canuelloida), Diosaccus tenuicornis (Claus, 1863), Asellopsis hispida Brady y Robertson, 1873, Wellsopsyllus (intermediopsyllus) intermedius (Scott y Scott, 1895) (todas Harpacticoida) fueron registradas por primera vez en las costas de Cerdeña. La comunidad de copépodos resultó particularmente rica en la isla de Ogliastra, un islote rocoso con arrecifes naturales, bancos de rocas y praderas de Posidonia oceanica. Las epecies encontradas en la zona estaban relacionadas principalmente con arenas gruesas y detritos macrófitos.

Datos publicados en GBIF: doi:10.15470/dxru6l

Palabras clave: Copépodos meiobénticos, Meiofauna, Biogeografía, Lista de control, Cerdeña, Italia

Resum

Contribució al coneixement dels copèpodes (Crustacea) meiobèntics de la costa de Sardenya, Itàlia
Les dades disponibles sobre espècies italianes de copèpodes Canuelloida Khodami, Vaun MacArthur, Blanco-Bercial i Martínez Arbizu, 2017 i Harpacticoida Sars, 1903 registren un total de 210 espècies, però la seva diversitat i la seva biogeografia continuen estan escassament investigades. Vam portar a terme un estudi faunístic a la costa est de Sardenya (regió d’Ogliastra) a fi de documentar-hi la presència d’aquests taxons. Hi vam trobar un total de 41 espècies de 36 gèneres i 18 famílies. Tot i que moltes espècies es van identificar com a putatives, la llista de control italiana vigent va ser actualitzada amb 12 registres nous de gèneres i quatre d’espècies. Longipedia coronata Claus, 1862 (Canuelloida), Diosaccus tenuicornis (Claus, 1863), Asellopsis hispida Brady i Robertson, 1873, Wellsopsyllus (intermediopsyllus) intermedius (Scott i Scott, 1895) (totes Harpacticoida) van ser registrades per primera vegada a les costes de Sardenya. La comunitat de copèpodes va resultar particularment rica a l’illa d’Ogliastra, un illot rocallós amb esculls naturals, bancs de roques i praderies de Posidonia oceanica. Les espècies trobades a la zona estaven relacionades principalment amb sorres gruixudes i detritus macròfits.

Dades publlicades a GBIF: doi:10.15470/dxru6l

Paraules clau: Copèpodes meiobèntics, Meiofauna, Biogeografia, Llista de control, Sardenya, Itàlia

Introduction

Copepoda Milne Edwards, 1840 is one of the largest and most diversified crustacean Subclasses. It includes over 10,000 species, 2,400 genera and 210 families (Appeltans et al., 2012). These crustaciansare found at any salinity level, from the supralittoral to the abyssal zone, and at all temperatures. from polar to tropical areas (Hicks and Coull, 1983; Giere, 2009). Copepoda are often the second most abundant meiofaunal taxon after Nematoda (Ansari et al., 2012; Sandulli et al., 2014; Semprucci et al., 2015, 2018) and even the most dominant taxon in marine algae and hard bottoms (Danovaro and Fraschetti, 2002; Kotwicki, 2002). They are sensitive to pollutants, making them the best bioindicators along with Nematoda (Coull and Chandler, 1992; Frontalini et al., 2014; Semprucci et al., 2016).

Despite the importance of Copepoda and the increase in taxonomical studies, knowledge of the species of the Italian coasts is fragmentary. Most records have been reported for the Venice lagoon, the Po Delta (Adriatic Sea), the Gulf of Naples and the Genoa coast (Tyrrhenian and Ligurian Sea, respectively) (Todaro and Ceccherelli, 2010), whereas little information is available on the composition of the copepod community of Sardinia (Pesce and Galassi, 1986; Ceccherelli and Mistri, 1990; Cottarelli and Bruno, 1993; Berera et al., 2001; Cottarelli et al., 2008). The aim of this survey was to improve knowledge about Italian Copepoda Harpacticoida and Canuelloida, focusing on Sardinia, and in particular on the Ogliastra coast remained unexplored to date.

Material and methods

Sampling was carried out between 4 and 21 August 2015 along the coast of Ogliastra, on the eastern side of Sardinia, between Isolotto d’Ogliastra and Orrì Piscine. During the sampling, the sea was calm and water temperature was about 26 °C. The bottom was predominantly rocky, with submerged and emerging rocks interspersed with sandy deposits. Posidonia oceanica meadows are often common along the Ogliastra coast. Sampling depths ranged between 0-1 m and 21 m.

In detail, five sites were sampled (fig. 1):

  • Isolotto d’Ogliastra (IO) is a small rocky island (latitude: 39.976110 °N; longitude: 9.702327 °E) surrounded by natural reefs and rocky shoals. Relevant Posidonia oceanica meadows covering the rocky bottom are present. This site is characterized by moderate human disturbance because it acts as a refuge for boats over summer only. Sediment samples were collected at a depth of 12 m from soft bottoms located offshore.
  • Cala Moresca (CM) is a small creek near Arbatax harbour, beyond the northern limit of Porto Frailis (latitude: 39.934081 °N; longitude: 9.715425 °E). Human disturbance is moderate, consisting mainly of the transit of fishing boats, motorboats and ships, and also the presence of a resort. The sampling site was at a depth of 21 m.
  • Porto Frailis (PF) is north of San Gemiliano and south of Cala Moresca (latitude: 39.924608 ° N; longitude: 9.706523 °E). The beach is surrounded by two promontories with steep cliffs. The touristic infrastructure may be an important factor of disturbance in summer due to extensive traffic of yachts and ships in the gulf. Samples were collected at the shoreline.
  • San Gemiliano (SG) is located between the town of Basaura and Porto Frailis (latitude: 39.919587 °N; longitude: 9.700757 °E). This area has a beach with numerous bathing resorts and residences. Besides the tourist impact here, there is also urban sewage flowing into the marine waters, particularly in summer. Samples were taken close to the shoreline in a sheltered area at the base of the promontory (0.10 m), far from the main beach. P. oceanica meadows are present near the sampling site.
  • Orrì (OR), located south of San Gemiliano, is a long beach with bathing resorts and tourism, making an impacting mainly in summer. The traffic of motorboats and yacht beyond 500 meters of the shore is moderate (latitude: 39.900411 °N; longitude: 9.682187 °E). The samples were taken in the intertidal zone.
noli_et_al_fig_1_location_map_of_the_study_area_eastern_sardinia_italy_with_sampling_stations

Fig. 1. Location map of the study area (Eastern Sardinia, Italy), with sampling stations: IO, Isolotto d’Ogliastra; CM, Cala Moresca; PF, Porto Frailis; SG, San Gemiliano; OR, Orrì. Fig. 1. Mapa de situación del área de estudio (este de Cerdeña, Italia) con los puntos de muestreo: IO, Islote de Ogliastra; CM, Cala Moresca; PF, Porto Frailis; SG, San Gemiliano; OR, Orrì.

 

The substratum at IO, CM and SG consisted of coarse sediments, while at PF and OR it was fine sands. All the samples contained vegetal material from seaweed and Posidonia oceanica.

The sediment was collected by a scuba diver from the upper two centimetres of the substratum (manual corer diameter 5 cm). At each site two samples were collected and then treated with magnesium chloride (7 % in aqueous solution) to narcotize meiofauna and then with formaldehyde (4 % buffered seawater solution) to fix them (Hulings and Gray, 1976). Meiofaunal organisms were stained with Rose Bengal (0.5 g/l) before laboratory processing.

In the laboratory, meiofaunal organisms were separated from sediment by washing through a set of 0.5 mm and 0.042 mm sieves. The extraction of specimens and their sorting into major taxa were performed under a stereomicroscope as reported in Semprucci et al. (2014). All the Harpacticoida and Canuelloida specimens were isolated, counted and identified to the lowest possible taxonomic level under a Nikon Optiphot-2 microscope equipped with Differential interference contrast (DIC). The identification was based on diagnoses and identification keys by Lang (1948, 1965), Huys and Boxshall (1991), Huys et al. (1992); Boxshall and Halsey (2004). The systematic position and the global geographical distribution of each taxon was discussed in accordance with the WoRMS database; Walter and Boxshall (2018) and main specific literature (Lang, 1948; Mielke, 1986; Bodin, 1997; Gee, 2006) (see table 1), while the Italian distribution was considered according to Todaro and Ceccherelli (2010). The biogeographical distribution of the marine Italian fauna was reported according to the subdivision of Italian seas reported in figure 2 (Bianchi, 2004) as follows: 1, Ligurian Sea; 2, Sardinia and Northern Tyrrhenian Sea; 3, South Tyrrhenian Sea and Strait of Sicily; 4, Strait of Messina; 5, South-eastern tip of Sicily, Pelagie Islands; 6, Ionian Sea; 7, Southern Adriatic Sea; 8, Central Adriatic Sea; 9, Northern Adriatic Sea.

noli_et_al_fig_2_subdivision_of_the_biogeographical_italian_seas_according_to_bianchi_2004

Fig. 2. Subdivision of the biogeographical Italian seas according to Bianchi (2004). Fig. 2. Subdivisión biogeográfica de los mares italianos según Bianchi (2004).

Results

A total of 225 individuals were collected and identified. Among them, we found forty-one species belonging to two orders (Canuelloida and Harpacticoida), 18 families and 36 genera (table 1; GBIF: doi:10.15470/dxru6l). Canuelloida order was represented only by one genus and species: Longipedia coronata Claus, 1862, while all the other taxa belonged to the Harpacticoida order. The richest families of Harpacticoida were Miraciidae Dana, 1846 (8 species) and Paramesochridae Lang, 1944 (6), followed by Canthocamptidae Brady, 1880 (3), Ectinosomatidae Sars, 1903 (3), Laophontidae Scott, 1904 (3), Tetragonicipitidae Lang, 1944 (3) Cletodidae Scott, 1904 (2), Rhizotrichidae Por, 1986 (2), Tisbidae Stebbing, 1910 (2), Ameiridae Boeck, 1865, Ancorabolidae Sars, 1909, Cylindropsyllidae Sars, 1909, Harpacticidae Dana, 1846, Idyanthidae Lang, 1948, Leptastacidae Lang, 1948, Orthopsyllidae Huys, 1990, and Parastenheliidae Lang, 1936 (all with 1 species). The families Miraciidae and Paramesochridae were also characterized by the highest number of genera: Miraciidae with 7 (Amphiascopsis Gurney, 1927, Amphiascus Sars, 1905, Bulbamphiascus Lang, 1944, Diosaccus Boeck, 1873, Haloschizopera Lang, 1944, Stenhelia Boeck, 1865, Typhlamphiascus Lang, 1944) and Paramesochridae with 3 genera (Emertonia Wilson, 1932, Paramesochra Scott, 1892, Wellsopsyllus Kunz, 1981).

noli_et_al_table_1

Table 1. List of Harpacticoida and Canuelloida (Subclass Copepoda) found for the Ogliastra coast (Sardinia, Tyrrhenian Sea, Italy). Ss, Sampling sites: IO, Isolotto d’Ogliastra; CM, Cala Moresca; PF, Porto Frailis; SG, San Gemiliano; and OR, Orrì. BIs, Biogeographical Italian sectors: 1, Ligurian Sea; 2, Sardinia and Northern Tyrrhenian Sea; 3, South Tyrrhenian Sea and Strait of Sicily; 4, Strait of Messina; 5, South–eastern tip of Sicily, Pelagie Islands; 6, Ionian Sea; 7, Southern Adriatic Sea; 8, Central Adriatic Sea; 9, Northern Adriatic Sea. Data published through GBIF (doi:10.15470/dxru6l). Tabla 1. Lista de Harpacticoides y Canuelloides (subclase Copépodos) hallados en la costa de Ogliastra (Cerdeña, mar Tirreno, Italia). Ss, Puntos de muestreo: IO, Islote de Ogliastra; CM, Cala Moresca; PF, Porto Frailis; SG, San Gemiliano; y OR, Orrì. Bls, sectores biogeográficos italianos: 1, Mar de Liguria; 2, Cerdeña y norte del mar Tirreno; 3, Sur del mar Tirreno y estrecho de Sicilia; 4, Estrecho de Mesina; 5, extremo sudeste de Sicilia, islas Pelagias; 6, Mar Jónico; 7, Sur del mar Adriático; 8, Mar Adriático central; 9, Norte del mar Adriático. Datos publicados en GBIF (doi:10.15470/dxru6l).

 

The site IO was the richest (26 species), followed by OR and PF (8), CM (7) and SG (6). The following species were found only at IO: the Canuelloida Longipedia coronata Claus, 1863 (Longipediidae) and the Harpacticoida Arenosetella germanica germanica Kunz, 1937 (Ectinosomatidae), Typhlamphiascus spp., Amphiascopsis sp. 1, Haloschizopera sp. 1 (Miraciidae), Emertonia sp. 1 and 2, Wellsopsyllus intermedius (Scott and Scott, 1895), Wellsopsyllus sp. 1, Paramesochra sp. 3 and 4 (Paramesochridae), Tetragoniceps sp. 1 and 2, Phyllopodopsyllus sp. 1 (Tetragoniciptidae), Pseudolaophonte spinosa (Thompson, 1893) (Laophontidae) and Laophontodes sp. 1 (Ancorabolidae). CM showed a lower species number, but was the second richest site with several species only detected there: Stenhelia sp. 1 (Miraciidae), Bryocamptus sp. 1 (Canthocamptidae), Enhydrosoma propinquum (Brady, 1880) (Cletodidae), Tryphoema sp. 1 (Rhizotrichidae), Laophonte cornuta Philippi, 1840 and Asellopsis hispida Brady and Robertson, 1873 (Laophontidae).

As table 1 shows, most specimens found in this study were identified as putative species.

Discussion and conclusions

Studies on the marine meiofauna have increased considerably in number in the last decades, but few updated lists of species have been published. This is a relevant problem in advancing new hypotheses on the distribution and biogeography of a meiobenthic group. Moreover, the information present in large faunistic databases such as WoRMS may underestimate the real distribution of the species because a number of data have been published in scientific journals with only local diffusion (Semprucci, 2013; Semprucci and Balsamo, 2015). In the present study, representatives of two copepod orders, Canuelloida and Harpacticoida, were found. Considering data currently available, 12 genera (Bradya Boeck, 1873, Bryocamptus Chappuis, 1929, Cletodes Brady, 1872, Cletocamptus Schmankevitsch, 1875, Emertonia, Haloschizopera, Idyella Sars, 1905, Laophontodes Scott, 1894, Psammastacus Apostolov and Marinov, 1988, Pseudolaophonte Scott, 1896, Rhizothrix Sars, 1909, Stenhelia, Tetragoniceps Brady, 1880, Typhlamphiascus, Tryphoema Monard, 1926, Wellsopsyllus) and 4 species (the Canuelloida Longipedia coronata and the Harpacticoida Diosaccus tenuicornis, Asellopsis hispida, Wellsopsyllus (intermediopsyllus) intermedius) represent new records for Sardinia and also for Italian coasts (Todaro and Ceccherelli, 2010).

Most sediments of the study area are coarse sands rich in vegetal detritus from seaweeds and P. oceanica. Copepods become typically more abundant with the increase in grain size (Losi et al., 2012; Semprucci et al., 2015) and are often associated with algal or seagrass detritus (Ceccherelli and Mistri, 1990; Mascart et al., 2013, 2015). As reported in the cited literature, the presence of macrophytal detritus may play an important role as a refuge and food source for these animals, increasing their abundance and diversity (e.g. families Laophontidae, Miraciidae and Tisbidae).

Some copepods develop peculiar adaptations to their habitat. For instance, Tisbidae are good swimmers, well-adapted to high hydrodynamic conditions, and mainly found, in fact, close to the foreshore that is more exposed to wave action (SG, PF). Tisbidae also have short reproductive cycles and they are often used as target species in laboratory experiments and as indicators of pollution (Gee et al., 1985; Hutchinson and Williams, 1989; Williams, 1992; Villano and Warwick, 1995). Miraciidae like D. tenuicornis are known to colonize subtidal habitats up to l 16 m in depth (Sönmez et al., 2014). In the study area, D. tenuicornis was found only in the shoreline of Porto Frailis, in association with P. oceanica fragments. In this species, the presence of elongated and prehensile limbs is often regarded as adaptation to phytal habitats (Giere, 2009; Zaleha et al., 2010; Mascart et al., 2015). Instead, species with a typical mesopsammic look (e.g. Cylindropsyllus sp. 1, Psammastacus confluens and Rhizothrix sp. 1) were all found in the fine sands of Orrì. They show small, cylindrical and spindle-shaped bodies that allow them to live in the interstitial waters of the sediments (Lang, 1948).

The richness of Isolotto d’Ogliastra (IO) was notably higher (26 species) than in the other sites that all showed comparable values (i.e. from 6 to 8). The high richness at IO is likely related to the high naturalistic value of the area that is characterized by the presence of the widest seagrass system (P. oceanica) of the study area. Furthermore, an overall lower human disturbance was present at IO than at the other sites that are subject to a higher touristic pressure. Several copepod species are, in fact, sensitive to environmental impacts and are often considered as bioindicators along with nematodes in ecological studies (Danovaro et al., 2002; Frontalini et al., 2014; Semprucci et al., 2015). Among the species unique to IO, we found samples of the genera Longipedia, Arenosetella and Wellsopsyllus that some authors highlighted as sensitive to pollution (Oviatt et al., 1982; Huys et al., 1992). In contrast, the site with the presence of sewage discharges and extensive traffic of yachts and ships (San Gemiliano) was the site with the lowest number of species reported, with genera recognized for their high survival capacities (namely Ameira, Amphiascus Bulbamphiascus, Cletocamptus and Tisbe) (Anger and Scheibel, 1976; Gee et al., 1985; Coull and Chandler, 1992; Gee, 1999; Bejarano and Chandler, 2003; Giere, 2009).

In conclusion, the Ogliastra coast showed a good level of Copepoda richness comparable to other areas of the Mediterranean basin (e.g. Ceccherelli and Mistri, 1990; Mascart et al., 2015). Some environmental features of the study area such as the coarse grain size and the abundant macrophytal detritus concur in creating suitable life conditions for this meiobenthic group. This is underlined by the number of species documented (41) that, despite the low sampling effort in this study, covered 15 and 20 % of the number of benthic copepod species known for the West Mediterranean Sea (283 species) and Italian coasts (210) (Todaro and Ceccherelli, 2010; Chertoprud et al., 2010). Thus, the new information collected in this survey represents a relevant update on the copepod fauna not only for Sardinia but also for the Italian and Mediterranean coasts.

References

Alper, A., Sonmez, S., Sak, S., Karaytug, S., 2015. Marine harpacticoid (Copepoda, Harpacticoida) fauna of the Dilek Peninsula (Aydın, Turkey). Turkish Journal of Zoology, 39: 580-586.
Anger, K., Scheibel, W., 1976. Die benthische Copepodenfauna in einem ufernahen Verschmutzungsgebiet der westlichen Ostsee. Helgoländer Wissenschaftliche Meeresuntersuchungen, 28: 19-30.
Ansari, K. G. M. T., Lyla, P. S., Khan, A. S., 2012. Faunal composition of metazoan meiofauna from southeast continental shelf of India. Indian Journal of Geo-Marine Sciences, 41: 457-467.
Apostolov, A., 2008. Harpacticoïdes (Crustacea, Copepoda) de la mer égée (plages de Kavala, Grèce du nord). [Harpacticoids (Crustacea, Copepoda) from the Aegean Sea (Kavala beaches, northern Greece).] Historia Naturalis Bulgarica. 19: 5-33.
Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Błażewicz-Paszkowycz, M., Bock, P., Boxshall, G., Boyko, C. B., Brandão, S. N., Bray, R. A., Bruce, N. L., Cairns, S. D., Chan, T. Y., Cheng, L., Collins, A. G., Cribb, T., Curini-Galletti, M., Dahdouh-Guebas, F., Davie, P. J., Dawson, M. N., De Clerck, O., Decock, W., De Grave, S., De Voogd, N. J., Domning, D. P., Emig, C. C., Erséus, C., Eschmeyer, W., Fauchald, K., Fautin, D. G., Feist, S. W., Fransen, C. H., Furuya, H., Garcia-Alvarez, O., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Gómez-Daglio, L., Gordon, D. P., Guiry, M. D., Hernandez, F., Hoeksema, B. W., Hopcroft, R. R., Jaume, D., Kirk, P., Koedam, N., Koenemann, S., Kolb, J. B., Kristensen, R. M., Kroh, A., Lambert, G., Lazarus, D. B., Lemaitre, R., Longshaw, M., Lowry, J., Macpherson, E., Madin, L. P., Mah, C., Mapstone, G., McLaughlin, P. A., Mees, J., Meland, K., Messing, C. G., Mills, C. E., Molodtsova, T. N., Mooi, R., Neuhaus, B., Ng, P. K., Nielsen, C., Norenburg, J., Opresko, D. M., Osawa, M., Paulay, G., Perrin, W., Pilger, J. F., Poore, G. C., Pugh, P., Read, G. B., Reimer, J. D., Rius, M., Rocha, R. M., Saiz-Salinas, J. I., Scarabino, V., Schierwater, B., Schmidt-Rhaesa, A., Schnabel, K. E., Schotte, M., Schuchert, P., Schwabe, E., Segers, H., Self-Sullivan, C., Shenkar, N., Siegel, V., Sterrer, W., Stöhr, S., Swalla, B., Tasker, M. L., Thuesen, E. V., Timm, T., Todaro, M. A., Turon, X., Tyler, S., Uetz, P., Van der Land, J., Vanhoorne, B., Van Ofwegen, L. P., Van Soest, R. W., Vanaverbeke, J., Walker-Smith, G., Walter, T. C., Warren, A., Williams, G. C., Wilson, S. P., Costello M. J., .2012. The magnitude of global marine species diversity. Current Biology, 22: 2189-2202.
Arunachalam M., Balakrishnan Nair N., 1988. Harpacticoid copepods associated with the seagrass Halophila ovalis in the Ashtamudi Estuary, south-west coast of India. Hydrobiologia, 167/168: 515–522.
Bakir, A. K., Katagan, T., Aker, H. V., Ozcan, T., Sezgin, M., Suat AteŞ, A., Kokac , C., Kirkim, F., 2014. The marine arthropods of Turkey. Turkish Journal of Zoology, 38: 765-831.
Bejarano, A. C., Chandler, G. T., 2003. Reproductive and developmental effects of atrazine on the estuarine meiobenthic copepod Amphiascus tenuiremis. Environmental Toxicology and Chemistry, 22: 3009-3016.
Berera, R., Cottarelli, V., Bruno, M. C., 2001. Ichnusella improvisa sp. nov. from subterranean waters of Sardinia (Italy) and remarks on Itunella intermedia and Itunella muelleri (Copepoda, Harpacticoida). Italian Journal of Zoology, 68: 327-334.
Bianchi, C. N., 2004. Proposta di suddivisione dei mari italiani in settori biogeografici. Notiziario SIBM, 46: 57-59.
Bodin, P., 1997. Catalogue of the new marine harpacticoid copepods. Studiedocumenten van het K.B.I.N., Documents de Travail de l’I.R.Sc.N.B., 89. Koninklijk Belgisch Instituut voor Natuurwetenschappen: Brussels, Belgium.
Boxshall, G. A., Halsey, S. H., 2004. An introduction to copepod diversity. Ray Society, Andover, UK.
Cattrijsse, A., Vincx, M., 2001. Biodiversity of the benthos and the avifauna of the Belgian coastal waters: summary of data collected between 1970 and 1998. Sustainable Management of the North Sea. Federal Office for Scientific, Technical and Cultural Affairs: Brussel, Belgium.
Ceccherelli, V. U., Mistri, M., 1990. Ecological and zoogeographical study of some Mediterranean associations of brackish water harpacticoids. Italian Journal of Zoology, 57: 73-81.
Chang, C. Y., 2007. Two Harpacticoid species of genera Nitokra and Ameira (Harpacticoida: Ameiridae) from brackish waters in Korea. Integrative Biosciences, 11(2): 247-253.
Chertoprud, E. S., Azovsky, A. I., 2001. Harpacticoida from a seasonal field survey in the White Sea. Moscow State University, http://dx.doi.org/10.14284/27
Chertoprud, E. S., Garlitska, L. A., Azovsky, A. I., 2010. Large-scale patterns in marine harpacticoid (Crustacea, Copepoda) diversity and distribution. Marine Biodiversity, 40: 301–315.
Cottarelli, V., Bruno, M. C., 1993. Harpacticoida (Crustacea, Copepoda) from subterranean waters of Bue Marino cave, Sardinia, and St. Barthélémy cave, Corsica, and description of three new species. International Journal of Speleology, 22: 3.
Cottarelli, V., Bruno, M. C., Berera, R., 2008. Two new species of Parastenocaris (Copepoda, Harpacticoida, Parastenocarididae) from groundwater of Sardinia and Sicily. International Journal of Speleology, 22: 3.
Coull, B. C., Chandler, G. T., 1992. Pollution and meiofauna: field, laboratory, and mesocosms studies. Oceanography and Marine Biology An Annual Review, 30: 191–271.
Craeymeersh, J., Kingston, P., Rachor, E., Duineveld, G., Heip, C., Vanden Berghe, E.,1986. North Sea Benthos Survey. http://www.marinespecies.org/aphia.php?p=sourcedetails&id=138749 [Accessed on July 2018].
Danovaro, R., Fraschetti, S., 2002. Meiofaunal vertical zonation on hard-bottoms: comparison with soft-bottom meiofauna. Marine Ecology Progress Series, 230: 159–169.
Danovaro, R., Gambi, C., Mirto, S., 2002. Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Marine Ecology Progress Series, 234: 95-104.
Eswari Y. N. K., Ramanibai, R., 2004. Estuarine copepod abundance and diversity in relation to environmental variables, southeast coast of India. Journal of the Marine Biological Association of India, 46(1): 10-20.
Felder, D. L., Camp, D. K., Eds., 2009. Gulf of Mexico–Origins, Waters, and Biota. Biodiversity. Texas A&M Press, College Station, Texas.
Fiers, F., 1996. Redescription of Enhydrosoma lacunae Jakubisiak, 1933 (copepoda, Harpacticoida); with comments on the Enhydrosoma species reported from west Atlantic localities, and a discussion of cletodid development. Sarsia North Atlantic Marine Science, 81(1):1-27.
Frontalini, F., Semprucci, F., Armynot du Châtelet, E., Francescangeli, F., Margaritelli, G., Rettori, R., Spagnoli, F., Balsamo, M., Coccioni, R., 2014. Biodiversity trends of the meiofauna and foraminifera assemblages of Lake Varano (southern Italy). Proceedings of Biological Society of Washington, 127: 7-22.
Gee, J. M., 1999. A new species of Cletocamptus Schmankewitsch 1875 (Copepoda; Harpacticoida) from a mangrove forest in Malaysia. Hydrobiologia, 412: 143-153.
Gee J. M., 2006. Parastenheliidae (Copepoda: Harpacticoida) from the Isles of Scilly. Journal of Natural History, 40: 2611-2652.
Gee, J. M., Warwick, R. M., Schaanning, M., Berge, J. A., Ambrose, Jr W. G., 1985. Effects of organic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments. Journal of Experimental Marine Biology and Ecology, 91: 247-262.
George, K. H., 2013. Faunistic research on metazoan meiofauna from seamounts – a review. Meiofauna Marina, 20: 1-32.
Gheerardyn, H., De Troch, M., Ndaro, S. G. M., Raes, M., Vincx, M., Vanreusel, A., 2008. Community structure and microhabitat preferences of harpacticoid copepods in a tropical reef lagoon (Zanzibar, Tanzania). Journal of the Marine Biological Association of the United Kingdom, 88(4): 747-758.
Giere, O., 2009. Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer Science and Business Media, Berlin.
Goddart, M., 2003. Copépodos de pozas intermareales de la Isla de Pascua. Ciencia y Tecnología del Mar, 26 (1): 51–78.
Gòmez, S., 2003. Three New Species of Enhydrosoma and a New Record of Enhydrosoma Lacunae (Copepoda: Harpacticoida: Cletodidae) from the Eastern Tropical Pacific. Journal of Crustacean Biology, 23(1): 94-118.
Hayward, P. J., Ryland, J. S., 1990. The marine fauna of the British Isles and North-West Europe: 1. Introduction and protozoans to arthropods. Clarendon Press: Oxford, UK. ISBN 0-19-857356-1.
Herman, R. L., 1989. Structure of the meiobenthos communities in the Southern Bight of the North Sea, with special attention for the Copepoda Harpacticoida [De struktuur van de meiobenthosgemeenschappen in de Zuidelijke Bocht van de Noordzee, met speciale aandacht voor de Copepoda Harpacticoida]. PhD Thesis. Rijksuniversiteit Gent, Faculteit der Wetenschappen: Gent, Belgium.
Hicks, G. R. F., Coull, B. C., 1983. The ecology of marine meiobenthic harpacticoid copepods. Oceanography and Marine Biology: An Annual Review, 21: 67-175.
Hulings, N. C., Gray, J. S., 1976. Physical factors controlling abundance of meiofauna on tidal and atidal beaches. Marine Biology, 34: 77-83.
Hutchinson, T. H., Williams, T. D., 1989. The use of sheepshead minnow (Cyprinodon variegatus) and a benthic copepod (Tisbe battagliai) in short-term tests for estimating the chronic toxicity of industrial effluents. Hydrobiologia, 188/189: 567-572.
Huys, R., Boxshall, G. A., 1991. Copepod evolution. Ray Society, London.
Huys, R., Gee, J. M., Moore, C. G., Hamond, R., 1996. Marine and Brackish Water Harpacticoid Copepods Part 1. Synopses of the British Fauna (Volume 51). Field Council, Shrewsbury, UK.
Huys, R., Herman, P. M. J., Heip, C. H. R., Soetaert, K., 1992. The meiobenthos of the North Sea: density, biomass trends and distribution of copepod communities. ICES Journal of Marine Science, 49: 23-44.
Huys, R., 2001. Copepoda. Harpacticoida. In: European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification (M. J. Costello et al., Ed.). Collection Patrimoines Naturels, 50: 268-280.
Kotwicki, L., 2002. Benthic Harpacticoida (Crustacea, Copepoda) from the Svalbard archipelago. Polish Polar Research, 23: 185-191.
Lang, K., 1948. Monographie der Harpacticiden. Hakan Ohlssons Boktryckeri, Lund (Sweden).
Lang, K., 1965. Copepoda: Harpacticoidea from the Californian Pacific Coast. Kungliga Svenska vetenskapsakademiens handlingar, 10: 1-566.
Losi, V., Montefalcone, M., Moreno, M., Giovannetti, E., Gaozza, L., Grondona, M., Albertelli, G., 2012. Nematodes as indicators of environmental quality in seagrass (Posidonia oceanica) meadows of the NW Mediterranean Sea. Advances in Oceanography and Limnology, 3: 69–91.
Mantha, G., Moorthy, M. S. N., Altaff, K., Dahms, H. U., Sivakumar, K., Hwang, J. S., 2012. Community structure of the Hapacticoida (Crustacea: Copepoda) on the coast of Chennai, India. Zoological Studies, 51, 463-475.
Mascart, T., Lepoint, G., De Troch, M., 2013. Meiofauna and harpacticoid copepods in different habitats of a Mediterranean seagrass meadow. Journal of the Marine Biological Association of the United Kingdom, 93: 1557-1566.
Mascart, T., Lepoint, G., Deschoemaeker, S., Binard, M., Remy, F., De Troch, M., 2015. Seasonal variability of meiofauna, especially harpacticoid copepods, in Posidonia oceanica macrophytodetritus accumulations. Journal of Sea Research, 95: 149-160.
Mielke, W., 1986. Copépodos de la meiofauna de hile, con descripción de dos nuevas especies. Revista Chilena de Historia Natural, 59: 73-86.
Muller, Y., 2004. Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France.
Nicholls, A. G., 1944. Littoral Copepoda from the Red Sea. The Annals and magazine of natural history; zoology, botany, and geology, 11(11): 487-503.
Oviatt, C., Frithsen, J., Gearing, J., Gearing, P., 1982. Low chronic additions of No. 2 fuel oil: chemlcal behavior, biological impact and recovery in a simulated estuarine environment. Marine Ecology Progress Series, 9: 121–136.
Pesce, G. L., Galassi, D. P., 1986. A new species of Elaphoidella from groundwater of Sardinia, and first record of Elaphoidella cvetkae Petkovski from Italy (Crustacea: Harpacticoida). Bulletin Zoologisch Museum, 10: 221-223.
Plum, C., George, K. H., 2009. The paramesochrid fauna of the Great Meteor Seamount (Northeast Atlantic) including the description of a new species of Scottopsyllus (Intermedopsyllus) Kunz (Copepoda: Harpacticoida: Paramesochridae). Marine Biodiveristy, 39: 265-289.
Polk, P., 1976. Inventarisatie plankton: fauna en flora [Plankton inventory: fauna and flora]. In: Project Sea final report: 7. Inventory of fauna and flora: 233-311 (J. C. J. Nihoul, L. de Coninck, Eds.). Brussels.
Por, F. D., 1964. A study of the Levantine and Pontic Harpacticoida (Crustacea, Copepoda). Zoologische Verhhandelingen, 64: 1-128.
Rao, G. C., Misra, A., 1983. Meiofauna from Lakshadweep, Indian Ocean. Cahiers de Biologie Marine, 224: 51-68.
Rajkumar, M., Sun, J., Jenkinson, I., Rahman, M., 2014. Seasonal variations in the structure of copepod assemblages in tropical marine and estuarine waters, Coleroon, south-east India. Journal of the Marine Biological Association of the United Kingdom, 94(3), 521-535.
Sabater, F., 1986. Some interstitial species of the crustacean communities of the Ter and Ebre rivermouths (NE Spain). Miscellania Zoológica, 10: 113-119.
Sandulli, R., Semprucci, F., Balsamo, M., 2014. Taxonomic and functional biodiversity variations of meiobenthic and nematode assemblages across an extreme environment: a study case in a Blue Hole cave. Italian Journal of Zoology, 81: 508-516.
Sarmento, V. C., Parrera Santos, P. J., 2012. Species of Harpacticoida (Crustacea, Copepoda) from the phytal of Porto de Galinhas coral reef, northeastern Brazil. CheckList. 8: 939-939.
Semprucci, F., 2013. Marine nematodes from the shallow subtidal coast of the Adriatic Sea: species list and distribution. International Journal of Biodiversity, 1: 1-9.
Semprucci, F., Balsamo, M., 2015. Checklist of free-living nematode species in the transitional environment of Lake Varano (Southern Italy). Arxius de Miscellània Zoològica, 13: 32–46.
Semprucci, F., Balsamo, M., Frontalini, F., 2014. The nematode assemblage of a coastal lagoon (Lake Varano, Southern Italy): ecology and biodiversity patterns. Scientia Marina, 78: 579-588.
Semprucci, F., Balsamo, M., Sandulli, R., 2016. Assessment of the Ecological quality (EcoQ) of the Venice lagoon using the structure and biodiversity of the meiofaunal assemblages. Ecological Indicators, 67C: 451-457.
Semprucci, F., Sbrocca, C., Rocchi, M., Balsamo, M., 2015. Temporal changes of the meiofaunal assemblage as a tool for the assessment of the ecological quality status. Journal of Marine Biological Association of the United Kingdom, 95: 247-254.
Semprucci F., Balsamo M., Appolloni L., Sandulli, R., 2018. Assessment of ecological quality status along the Apulian coasts (Eastern Mediterranean Sea) based on meiobenthic and nematode assemblages. Marine Biodiversity, 48: 105–115
Shih, C. T., Figueira, A. J. G., Grainger, E. H., 1971. A synopsis of Canadian marine zooplankton. Journal of the Fisheries Research Board of Canada, 176: 1-264.
Sönmez, S., Sak, S., Karaytuğ, S., 2014. Marine Interstitial and Phytal Miraciidae Dana, 1846 (Crustacea: Copepoda: Harpacticoida) Inhabiting along the Mediolittoral Zone of Turkish Coasts. Anadolu Doğa Bilimleri Dergisi, 5: 52-87.
Sugumaran, J., Naveed, M. S., Altaff, K., 2009. Diversity of meiofauna of Chennai, East coast of India. Journal of aquatic biology, 24: 31-34.
Todaro M. A., Ceccherelli V. U., 2010. Harpacticoida. Biologia Marina Mediterranea, 17 (suppl. 1): 452-464.
Tremblay, M. J., Anderson, J. T., 1984. Annotated Species List of Marine Planktonic Copepods Occurring on the Shelf and Upper Slope of the Northwest Atlantic (Gulf of Maine to Ungava Bay). Canadian Special Publication of Fisheries and Aquatic Sciences, 69.
Ustaoğlu, M.R., Özdemir Mis, D., Aygen, C., 2012. Observations on zooplankton in some lagoons in Turkey. Journal of the Black Sea/Mediterranean Environment, 18: 208-222.
Veit-Köhler, G., De Troch, M., Grego, M., Bonne, W., De Smet, G., Folkers, C., George, K.H., Guotong, C., Herman, R., Huys, R., Lampadariou, N., Laudien, J., Martínez Arbizu, P., Rose, A., Schratzberger, M., Seifried, S., Somerfield, P., Vanaverbeke, J., Vanden Berghe, E., Vincx, M., Vriser, B., Vandepitte, L., 2010. Large-scale diversity and biogeography of benthic copepods in European waters. Marine Biology, 157: 1819-1835.
Villano, N., Warwick, R. M., 1995. Meiobenthic communities associated with the sea-sonal cycle of growth and decay of Ulva rigida Arardh in the Palude Della Rosa, Lagoon of Venice. Estuarine, Coastal and Shelf Science, 4: 181-194.
Vorobyova, L, Kulakova, I., Bondarenko, O., Portyanko, V., Uzun, E., 2016. Meiofauna of the periphytal of the Odessa coast, Ukraine, Journal of the Black Sea/Mediterranean Environment, 22: 60–73.
Walter, T. C., Boxshall, G., 2018. World of Copepods database. http://www.marinespecies.org/copepoda Accessed on 28th May 2018].
Webber, W. R., Fenwick, G. D., Bradford-Grieve, J. M., Eagar, S. G., Buckeridge, J. S., Poore, G. C. B., Dawson, E. W., Watling, L., Jones, J. B., Wells, J. B. J., Bruce, N. L., Ahyong, S. T., Larsen, K., Chapman, M. A., Olesen, J., Ho, J., Green, J. D., Shiel, R. J., Rocha, C. E. F., Lörz, A., Bird, G. J., Charleston, W. A., 2010. Phylum Arthropoda Subphylum Crustacea: shrimps, crabs, lobsters, barnacles, slaters, and kin. In: New Zealand inventory of biodiversity: 2. Kingdom Animalia: Chaetognatha, Ecdysozoa, Ichnofossils: 98-232 (D. P. Gordon, Ed.). Canterbury University Press, New Zealand.
Wells, J. B. J., Rao, C. G., 1987. Littoral Harpacticoida (Crustacea: Copepoda) from Andaman and Nicobar Islands. Memoirs of the Zoological Survey of India, 16: 1-385.
Williams, T. D., 1992. Survival and development of copepod larvae Tisbe battagliai in surface microlayer, water and sediment elutriates from the German Bight. Marine Ecology Progress Series, 91: 221-228.
Willems, W. R., Curini-Galletti, M., Ferrero, T. J., Fontaneto, D., Heiner, I., Huys, R., Ivanenko, V. N., Kristensen, R. M., Kånneby, T., MacNaughton, M. O., Martínez Arbizu, P., Todaro, M. A., Sterre, W., Jondelius, U., 2009. Meiofauna of the Koster-area, results from a workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden).
Meiofauna Marina, 17: 1-34.
Yıldız, N. O., Karaytuğ, S., 2018. Harpacticoida (Crustacea: Copepoda) of the Three Islands on Aegean Sea (Turkey) with Eight New Records. Mediterranean Fisheries and Aquaculture Research, 1: 57-65.
Zaleha, K., Nazia A. K., Nurul Huda A. I., 2010. Species assemblages of benthic harpacticoid copepods on tide rock pool seaweeds of Pulau Besar, Melaka, Malaysia. Journal of tropical biology and conservation, 7: 1-10.

Contenido reseñado en: